Energy efficient climate control in museum stores

P-hal, Oerholm, NM

Lightweight roof
Light weight concrete walls
Concrete floor (no insulation)

Temperature control in summer

Heat gain from roof heats up

$$
\begin{aligned}
& \mathrm{T}=20^{\circ} \mathrm{C} \\
& \mathrm{RH}=70 \%
\end{aligned}
$$

 the space

Temperature control in winter

Heating

$$
\begin{aligned}
& \mathrm{T}=0^{\circ} \mathrm{C} \\
& \mathrm{RF}=100 \%
\end{aligned}
$$

Climate records for the interior over one year.

Humidity control in summer

Dehumidification in some

$$
\begin{aligned}
& \mathrm{T}=20^{\circ} \mathrm{C} \\
& \mathrm{RH}=70 \%
\end{aligned}
$$

 periods

Dehumidifier

50-60
\%RH

Humidity control in winter

Humidification in some

$$
\begin{aligned}
& \mathrm{T}=0^{\circ} \mathrm{C} \\
& \mathrm{RF}=100 \%
\end{aligned}
$$ periods

Climate records for the interior over one year.

New store for the Museum of cultural history in Ribe

Temperature control
The metal roof reflects the sun and prevents solar heating

$$
\operatorname{AER}=0,03 \mathrm{~h}^{-1}
$$

Temperature control

The floor has no insulation
The ground below gives temperaturestability on an annual cycle

Temperature gradient in February

Measured temperatures inside and outside

Ground temperature measured 2 m below surface

The climate records for one year in the Ribe store

$$
\begin{aligned}
\text { t-out } & \text { RH-in } \\
\text { t-in } & =\mathrm{g} / \mathrm{m}^{3} \text { out - in }
\end{aligned}
$$

The temperature is $8-16^{\circ} \mathrm{C}$

$$
\begin{aligned}
\text { t-out } & \text { RH-in } \\
\text { t-in } & \mathrm{g} / \mathrm{m}^{3} \text { out -in }
\end{aligned}
$$

Humidity control
Surplus of water vapor is removed by dehumidification

The temperature is $10-16^{\circ} \mathrm{C}$ and the RH is $55-60 \%$

$$
\begin{array}{rlr}
\text { t-out } & \text { RH-in } & \square \\
\text { t-in } & \mathrm{g} / \mathrm{m}^{3} \text { out }-\mathrm{in} & =
\end{array}
$$

...except when the dehumidifier was turned off

$$
\begin{aligned}
\text { t-out } & \text { RH-in } \\
\text { t-in } & \mathrm{g} / \mathrm{m}^{3} \text { out-in }
\end{aligned}
$$

Dehumidification is always needed in summer

$$
\begin{aligned}
& \text { t-out } \text { RH-in } \\
& \text { t-in } \square \\
& \hline
\end{aligned}
$$

Energy neutral store Use the solar heating to ry dehumidification

Computer simulation of empty store, $\mathrm{AER}=0,1 \mathrm{~h}^{-1}$

T out
RH out
T in
RH in

Unfired perforated clay bricks used for humidity buffer

	Climate control	Energy consumpt (pr. year)	Tempera ture	Relative humidity
Royal library, CPH	Full AC	30 $\mathrm{kWh} / \mathrm{m}^{3}$	$18-20^{\circ} \mathrm{C}$	$45-55 \%$
P-hal Oerholm	Heating Hum cont	10 $\mathrm{kWh} / \mathrm{m}^{3}$	$10-25^{\circ} \mathrm{C}$	$50-60 \%$
Værløse shelter	Dehumidi fication	$6 \mathrm{kWh} / \mathrm{m}^{3}$	$0-25^{\circ} \mathrm{C}$	$45-55 \%$
Ribe store	Dehumidi fication	1,5 $\mathrm{kWh} / \mathrm{m}^{3}$	$7-15^{\circ} \mathrm{C}$	$45-55 \%$

	Climate control	Energy consumpt (pr. year)	Tempera ture	Relative humidity
Royal library, CPH	Full AC	30 $\mathrm{kWh} / \mathrm{m}^{3}$	$18-20^{\circ} \mathrm{C}$	$45-55 \%$
P-hal Oerholm	Heating Hum cont	10 $\mathrm{kWh} / \mathrm{m}^{3}$	$10-25^{\circ} \mathrm{C}$	$50-60 \%$
Værløse shelter	Dehumidi fication	$6 \mathrm{kWh} / \mathrm{m}^{3}$	$0-25^{\circ} \mathrm{C}$	$45-55 \%$
Ribe store	Dehumidi fication	1,5 $\mathrm{kWh} / \mathrm{m}^{3}$	$7-15^{\circ} \mathrm{C}$	$45-55 \%$

	Climate control	Energy consumpt (pr. year)	Tempera ture	Relative humidity
Royal library, CPH	Full AC	30 $\mathrm{kWh} / \mathrm{m}^{3}$	$18-20^{\circ} \mathrm{C}$	$45-55 \%$
P-hal Oerholm	Heating Hum cont	10 $\mathrm{kWh} / \mathrm{m}^{3}$	$10-25^{\circ} \mathrm{C}$	$50-60 \%$
Værløse shelter	Dehumidi fication	$6 \mathrm{kWh} / \mathrm{m}^{3}$	$0-25^{\circ} \mathrm{C}$	$45-55 \%$
Ribe store	Dehumidi fication	1,5 $\mathrm{kWh} / \mathrm{m}^{3}$	$7-15^{\circ} \mathrm{C}$	$45-55 \%$

	Climate control	Energy consumpt (pr. year)	Tempera ture	Relative humidity
Royal library, CPH	Full AC	30 $\mathrm{kWh} / \mathrm{m}^{3}$	$18-20^{\circ} \mathrm{C}$	$45-55 \%$
P-hal Oerholm	Heating Hum cont	10 $\mathrm{kWh} / \mathrm{m}^{3}$	$10-25^{\circ} \mathrm{C}$	$50-60 \%$
Værløse shelter	Dehumidi fication	$6 \mathrm{kWh} / \mathrm{m}^{3}$	$0-25^{\circ} \mathrm{C}$	$45-55 \%$
Ribe store	Dehumidi fication	1,5	$7-15^{\circ} \mathrm{C}$	$45-55 \%$

